Triplet Mining for Facial Recognition
Convolutional Neural Networks

Team: Surabhi Desai, Islam Faisal, Andrew Nguyen, Prem Talwai

Industry Mentors: Cambron Carter and Divyaa Ravichandran

Academic Mentor: Shantanu Joshi
Research in Industrial Projects for Students (RIPS)

- The Program provides an opportunity for undergraduate students to work in teams with an academic mentor on real-world research projects proposed by sponsors from industry or the public sector.

- Hosted and co-funded by the Institute for Pure and Applied Mathematics (NSF Funded Math Institute on UCLA campus)
GumGum

- Applied computer vision company and pioneers in in-image and in-screen advertising

Example of in-image advertising
Facial Verification and Recognition

- **Recognition Engine (1 to N)**
 - Shia LeBeouf: 84%
 - George Donner: 10%
 - Hannibal Lecter: 5%
 - Shantanu Joshi: 0.002%

- **Verification Engine (1 to 1)**
 - Same identity: 90%
Deep Neural Networks Learning Hierarchical Representations
([Hochreiter-16] adopted from [Lee-2011])
Given the feature vectors of two faces, how can we tell if they represent the same person?
Cosine Similarity Score

\[S(V_1, V_2) = \cos(\phi) = \frac{V_1 \cdot V_2}{\|V_1\|\|V_2\|} \]
Consider a set \mathcal{I} of high-dimensional training vectors X_i

$\forall X_i \in \mathcal{I}$ there is a set S_{X_i} of training vectors that similar to X_i
Contrastive Loss (Hadsell-Chopra-LeCun-06)

- Consider a set \mathcal{I} of high-dimensional training vectors X_i
- $\forall X_i \in \mathcal{I}$ there is a set S_{X_i} of training vectors that similar to X_i
- Let G_W denote the learned (neural network) embedding
- For $X_1, X_2 \in \mathcal{I}$, the parameterized euclidean distance function (written shortly as D_W) can be expressed as

$$D_W(X_1, X_2) = \| G_W(X_1) - G_W(X_2) \|_2$$
Consider a set \mathcal{I} of high-dimensional training vectors X_i

- $\forall X_i \in \mathcal{I}$ there is a set S_{X_i} of training vectors that similar to X_i

- Let G_W denote the learned (neural network) embedding

For $X_1, X_2 \in \mathcal{I}$, the parameterized euclidean distance function (written shortly as D_W) can be expressed as

$$D_W(X_1, X_2) = \|G_W(X_1) - G_W(X_2)\|_2$$

The piecewise loss function for a training pair is given by:

$$L(W, X_1, X_2) = \begin{cases} D_W^2 & \text{if similar} \\ \max\{0, m - D_W\}^2 & \text{if dissimilar} \end{cases}$$

Dissimilar pairs contribute to the loss function only if their distance is within the margin m.
Contrastive Loss (Hadsell-Chopra-LeCun-06)

- Consider a set \mathcal{I} of high-dimensional training vectors X_i
- $\forall X_i \in \mathcal{I}$ there is a set S_{X_i} of training vectors that similar to X_i
- Let G_W denote the learned (neural network) embedding
- For $X_1, X_2 \in \mathcal{I}$, the parameterized euclidean distance function (written shortly as D_W) can be expressed as
 \[D_W(X_1, X_2) = \|G_W(X_1) - G_W(X_2)\|_2 \]

- The piecewise loss function for a training pair is given by:
 \[
 L(W, X_1, X_2) = \begin{cases}
 D_W^2 & \text{if similar} \\
 \max\{0, m - D_W\}^2 & \text{if dissimilar}
 \end{cases}
 \]

 Dissimilar pairs contribute to the loss function only if their distance is within the margin m.

- For P sampled training pairs and labels, the loss function is given by:
 \[
 \mathcal{L}(W) = \sum_{i=1}^{P} L(W, (Y, X_1, X_2)^i)
 \]
Triplet Loss for Neural Network Training

Consider now a triplet of images \((x^a, x^p, x^n)\)
Pass them into the neural net, denoted f
We wish to enforce the following condition for all triplets:

\[\|f(x^a) - f(x^p)\|_2^2 + m < \|f(x^a) - f(x^n)\|_2^2 \]

where \(m \) is some margin.

Define the triplet loss:

\[\mathcal{L} = \sum_{(x^a,x^p,x^n)} \left[\|f(x^a) - f(x^p)\|_2^2 - \|f(x^a) - f(x^n)\|_2^2 + m \right]_{+} \]

where \([\cdot]_+\) takes the positive part.
Triplet Loss for Neural Network Training (cont)

\[L = \sum_{(x^a, x^p, x^n)} \left[\|f(x^a) - f(x^p)\|_2^2 - \|f(x^a) - f(x^n)\|_2^2 + m \right]_+ \]
The triplet loss function cannot feasibly use all the data.

Simple combinatorics: 10000 images with 100 classes (relatively small) is about 50 million triplets!

Must be able to **mine** for a subset of the triplets that will train best.
The triplet loss function cannot feasibly use all the data

Simple combinatorics: 10000 images with 100 classes (relatively small) is about 50 million triplets!

Must be able to **mine** for a subset of the triplets that will train best

Select a smaller subset of “hard” triplets

How to do so? Somewhat agnostic with respect to mining method—so we present a few ways
Hard triplet mining: For all matching pairs \((x^a, x^p)\), choose the \(x^n\) that maximizes the triplet loss

\[
\arg\max_{x^n} \left[\|f(x^a) - f(x^p)\|^2_2 - \|f(x^a) - f(x^n)\|^2_2 + m \right] +
\]

Training is too “extreme”, especially at first—bad local minima. Can implement this later in training
Semi-hard mining: For all matching pairs \((x^a, x^p)\), fix \(m'\) and choose an \(x^n\) where

\[
\mathcal{L} = \|f(x^a) - f(x^p)\|_2^2 - \|f(x^a) - f(x^n)\|_2^2 + m > 0
\]

but

\[
\mathcal{L} < m'
\]

so \(0 < \mathcal{L} < m'\)
Semi-hard mining: For all matching pairs \((x^a, x^p)\), fix \(m'\) and choose an \(x^n\) where

\[
\mathcal{L} = \|f(x^a) - f(x^p)\|_2^2 - \|f(x^a) - f(x^n)\|_2^2 + m > 0
\]

but

\[
\mathcal{L} < m'
\]

so \(0 < \mathcal{L} < m'\)

- The triplets are not “as hard” because \(\mathcal{L}\) is constrained
- Usually \(m' = m = 1\); no real principle to the choice
Random-hard mining: For all matching pairs \((x^a, x^p)\), fix \(m''\) and choose a random \(x^n\) where

\[
\mathcal{L} = \|f(x^a) - f(x^p)\|^2_2 - \|f(x^a) - f(x^n)\|^2_2 + m > m''
\]

Occupies a middle ground between hard and semi-hard and allows for quicker training.
Results

Our accuracy on LFW: 0.937
Work summary

- Developed a Keras Implementation of triplet loss to fine-tune neural network feature embedding
- Developed a framework to combine the recognition and verification decision and a testing framework against a GumGum in-house dataset (***)
- Developed and implemented a novel metric learning method for face verification (***

(**) Denotes internal GumGum dataset

(***) Denotes internal GumGum dataset
Acknowledgement

- Academic Mentor: Shantanu Joshi
- GumGum Computer Vision Team, specially: Cambron Carter and Divyaa Ravichandran
- RIPS Director: Susana Serna, Program Coordinator: Dimi Mavalski, IPAM Staff, IT
- GumGum, IPAM, and the NSF for funding
- AUC Undergraduate Research Office Travel Grant #1711739
Poster Session: Friday January 12, 4:30 - 6:00pm - Exhibit Hall B2, Ground Level, San Diego Convention Center

Stochastic Proximal Gradient Methods for Metric Learning: Saturday January 13, 2018 - Room 12, Mezzanine Level, San Diego Convention Center 8:45 am

Get in touch: rips2017_gumgum@ipam.ucla.edu