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GumGum

Applied computer vision company and pioneers in in-image
and in-screen advertising

Example of in-image advertising



Facial Verification and Recognition



Neural Networks for Visual Tasks

Deep Neural Networks Learning Hierarchical Representations
([Hochreiter-16] adopted from [Lee-2011])



“Mirror, mirror, on the wall...”

Given the feature vectors of two
faces, how can we tell if they
represent the same person?



Similarity Between Feature Vectors
Fusing Recognition and Verification Outputs

Recognition Output

GumGum Facial Verification
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Contrastive Loss (Hadsell-Chopra-LeCun-06)

Consider a set I of high-dimensional training vectors Xi

∀Xi ∈ I there is a set SXi
of training vectors that similar to Xi

Let GW denote the learned (neural network) embedding
For X1,X2 ∈ I, the parameterized euclidean distance function
(written shortly as DW ) can be expressed as

DW (X1,X2) = ||GW (X1)− GW (X2)||2

The piecewise loss function for a training pair is given by:

L(W ,X1,X2) =

{
D2
W if similar

max{0,m − DW }2 if dissimilar

Dissimilar pairs contribute to the loss function only if
their distance is within the margin m.
For P sampled training pairs and labels, the loss function is
given by:

L(W ) =
P∑
i=1

L
(
W , (Y ,X1,X2)i

)
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Triplet Loss for Neural Network Training

Consider now a triplet of images (xa, xp, xn)



Triplet Loss for Neural Network Training (cont)

Pass them into the neural net, denoted f



Triplet Loss for Neural Network Training (cont)

We wish to enforce the following condition for all triplets:

||f (xa)− f (xp)||22 + m < ||f (xa)− f (xn)||22
where m is some margin.

Define the triplet loss:

L =
∑

(xa,xp ,xn)

[
||f (xa)− f (xp)||22 − ||f (xa)− f (xn)||22 + m

]
+

where [·]+ takes the positive part.



Triplet Loss for Neural Network Training (cont)



Triplet Mining

The triplet loss function cannot feasibly use all the data

Simple combinatorics: 10000 images with 100 classes
(relatively small) is about 50 million triplets!

Must be able to mine for a subset of the triplets that will
train best

Select a smaller subset of “hard” triplets

How to do so? Somewhat agnostic with respect to mining
method—so we present a few ways
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Triplet Mining (cont.)

Hard triplet mining: For all matching pairs (xa, xp), choose
the xn that maximizes the triplet loss

argmaxxn

[
||f (xa)− f (xp)||22 − ||f (xa)− f (xn)||22 + m

]
+

Training is too “extreme”, especially at first—bad local
minima. Can implement this later in training



Triplet Mining (cont.)

Semi-hard mining: For all matching pairs (xa, xp), fix m′ and
choose an xn where

L = ||f (xa)− f (xp)||22 − ||f (xa)− f (xn)||22 + m > 0

but

L < m′

so 0 < L < m′

The triplets are not “as hard” because L is constrained
Usually m′ = m = 1; no real principle to the choice
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Triplet Mining (cont.)

Random-hard mining: For all matching pairs (xa, xp), fix m′′

and choose a random xn where

L = ||f (xa)− f (xp)||22 − ||f (xa)− f (xn)||22 + m > m′′

Occupies a middle ground between hard and semi-hard and
allows for quicker training



Results

Our accuracy on LFW: 0.937



Work summary

Developed a Keras Implementation of triplet loss to fine-tune
neural network feature embedding

Developed a framework to combine the recognition and
verification decision and a testing framework against a
GumGum in-house dataset (***)

Developed and implemented a novel metric learning method
for face verification (***)
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Learn More...

Poster Session: Friday January 12, 4:30 - 6:00pm - Exhibit
Hall B2, Ground Level, San Diego Convention Center

Stochastic Proximal Gradient Methods for Metric Learning:
Saturday January 13, 2018 - Room 12, Mezzanine Level, San
Diego Convention Center 8:45 am

Get in touch: rips2017 gumgum@ipam.ucla.edu


