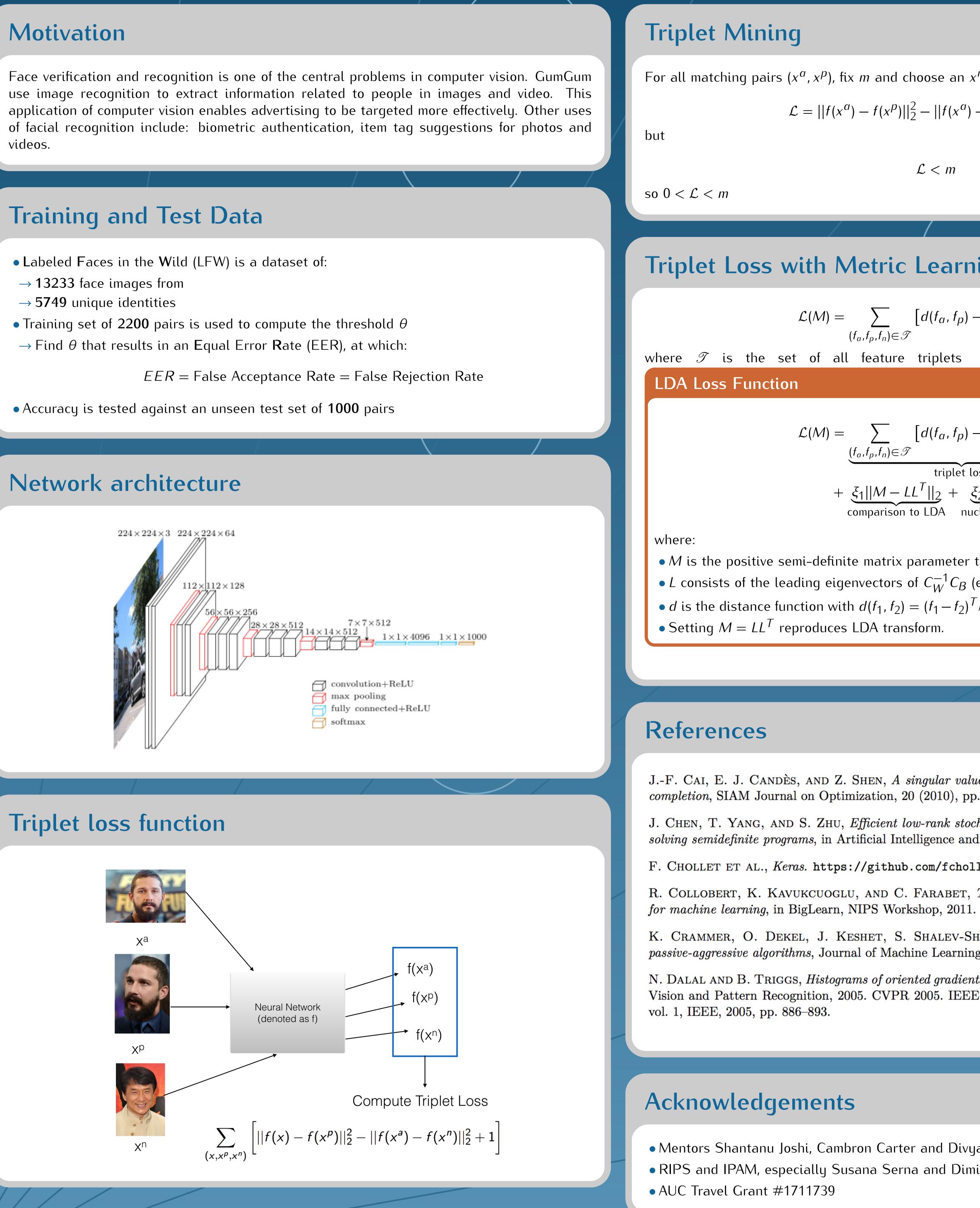
Convolutional Neural Networks and Metric Learning for Facial Verification

Islam Faisal

The American University in Cairo

videos.



Andrew Nguyen UC San Diego

Prem Talwai Cornell University

Surabhi Desai

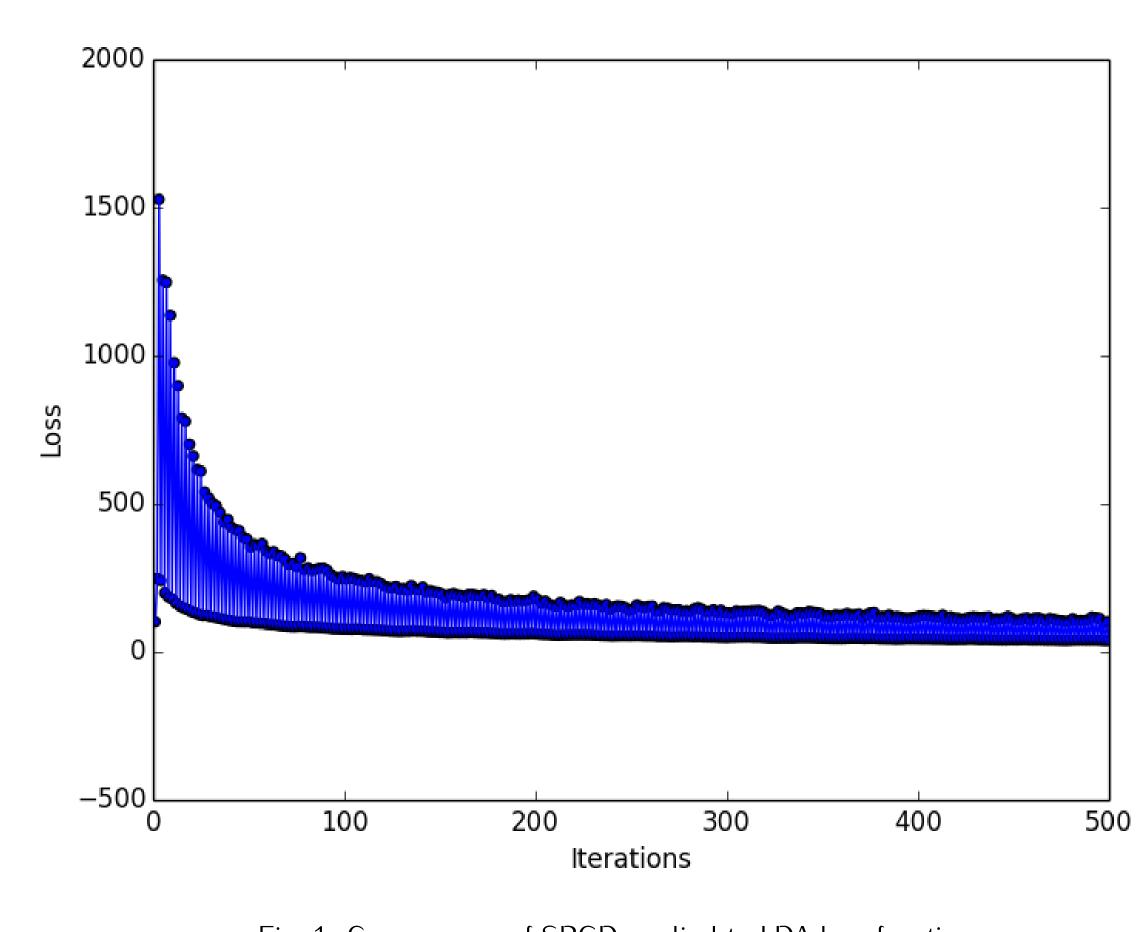
University of St Andrews

SPGD for Metric Learning

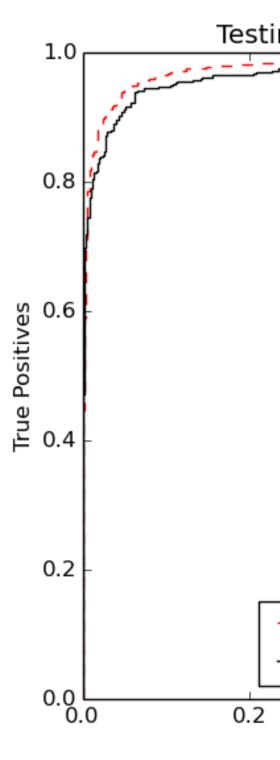
Stochastic Proximal Gradient Descent is a new algorithm for metric learning, because the nuclear norm rebuffs established methods. Let \mathcal{M} be all pos. semi def. matrices. $\mathcal{L}(\mathcal{M}) = g + h$ where $h = \xi_2 ||M||_*$ and g has subgradient G_t . Let step size $\eta_t = c/\sqrt{t}$. The goal is to iteratively learn M. The algorithm:

- of nonzero eigenvalues of $M_t \eta_t \hat{G}_t$.

Convergence of SPGD



Final Results



Mentor: Dr. Shantanu Joshi University of California Los Angeles

• $M_{t+1} = \operatorname{prox}_h(M_t - \eta_t G_t) := \operatorname{argmin}_{\mathcal{M} \in \mathscr{M}} g(M_t) + \eta_t \operatorname{Tr}((\mathcal{M} - M_t)^T G_t) + \frac{1}{2} ||\mathcal{M} - M_t||_F^2 + \eta_t h(W)$ • Estimate G_t with a lower rank stochastic gradient per Chen et. al 2014.

• Per Cai et al 2010, $M_{t+1} = \mathbf{prox}_h(M_t - \eta_t \hat{G}_t) = U_1 D_{\eta_t \xi_2} U_2^T$ where U_1 and U_2 are reduced matrices of normalized eigenvectors of $M_t - \eta_t \hat{G}_t$, and $D_{\eta_t \xi_2}$ is a diagonal matrix with diagonal $\mathbf{d} = [\max(\lambda_1 - \eta_t \xi_2, 0), \max(\lambda_2 - \eta_t \xi_2, 0), \dots, \max(\lambda_k - \eta_t \xi_2, 0)], \text{ where } \lambda_i \text{ are absolute values}$

Fig. 1: Convergence of SPGD applied to LDA loss function

|--|

4096-dim: raw features, AUC = 0.984236 — 1024-dim: triplet loss, AUC = 0.97692 0.8 0.4 0.6 False Positives

Fig. 2: Our accuracy on LFW: 0.937