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Motivation

Face verification and recognition is one of the central problems in computer vision. GumGum
use image recognition to extract information related to people in images and video. This
application of computer vision enables advertising to be targeted more effectively. Other uses
of facial recognition include: biometric authentication, item tag suggestions for photos and
videos.

Training and Test Data

e Labeled Faces in the Wild (LFW) is a dataset of:

— 13233 face images from
— 5749 unique identities

e Training set of 2200 pairs is used to compute the threshold 6

— Find 6 that results in an Equal Error Rate (EER), at which:

EER = False Acceptance Rate = False Rejection Rate

e Accuracy is tested against an unseen test set of 1000 pairs

Network architecture
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Compute Triplet Loss

lllf(X) = F(xP)1Z = 1 (x*) = F(x")II2 + 1]
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Triplet Mining

For all matching pairs (x9, xP), fix m and choose an x" where

L= |[f(x) — F(xP)]]5 — ||F(xT) — F(x")||5+ 1 > 0

so0< L<m

Triplet Loss with Metric Learning
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where & is the set of all feature triplets (fa-anchor, fp-positive, fp-negative)

LDA Loss Function

[d(fa, fp) — d(fa, ) + 1],
(fcufp: n)eg

N J/

trlplgg loss
-
+ M- LL )3 + SlIM]ls

comparison to LDA  nuclear norm

where:
e M is the positive semi-definite matrix parameter to be learned

e [ consists of the leading eigenvectors of C\/_V1 Cp (explains at least 80% of the variance)

e d is the distance function with d(f1, f,) = (f1 — ) M(f1 — F,) for f1, f> € .F (feature space)
e Setting M = L’ reproduces LDA transform.
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SPGD for Metric Learning

Stochastic Proximal Gradient Descent is a new algorithm for metric learning, because the
nuclear norm rebuffs established methods. Let M be all pos. semi def. matrices. L(M) =g+ h
where h = &||M||« and g has subgradient G;. Let step size n; = c/v/t. The goal is to
iteratively learn M. The algorithm:

o My 1 = prox,(Mt—ntGt) := argminy c_, g(/\/lt)+I7tTr((/\/l—/\/It)TGt)—|—%||/\/l—/\/lt||%_—+mh(W)
e Estimate Gt with a lower rank stochastic gradient per Chen et. al 2014.

e Per Cai et al 2010, M; 4 = prox,(M: — l7t67t) = U; DngUZT where Uy and U, are reduced

N

matrices of normalized eigenvectors of Mt—nt Gy, and Dp, g, is a diagonal matrix with diagonal
d = [max(A — nt&H, 0), max(Ar — nt&H,0), ..., max(Ar — ntéy, 0)], where A; are absolute values
of nonzero eigenvalues of Mt — n¢Gy.

Convergence of SPGD
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Fig. 1: Convergence of SPGD applied to LDA loss function

Final Results
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- - 4096-dim: raw features, AUC = 0.984236
— 1024-dim: triplet loss, AUC = 0.97692
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Fig. 2: Our accuracy on LFW: 0.937




